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INTRODUCTION

The process introduced in this paper serves as a useful model

for the study of random wave propagation problems and certain

areas of electronics and biochemistry. An initial phenomenon,

modeled as a Poisson point process whose effect is described

by a spherically invariant random variable C is observed

through a causal linear filter whose impulse response is G.

The observed process has the form

Z(w, t) = i Cj() G(t -T j(w)), - < t < +
j --

where 'r is the time of the j the jump of the original Poisson

process.

Spherically invariant laws are mixtures of normal ones

*r, +--?,i-!-,:1yh -er-rA in inhp tudv of wave nroDacAtion

problems

The first section of the paper contains a characterization of

such laws based on Choquet's representation theorem [41 and

some examples (the exponential and the student probability

laws).

In the second part of the paper one finds the characte-

ristic function of the process Z defined above, which is

strongly stationary. This is used in the third part to show

that the odd moments of Z vanish and to compute the moments of

order two and four.

The identification of the process Z requires that the

impulse response G be estimated knowing the moments of Z. This

can be done if the filter is assumed to have minimal phase, a

concept frequently used in automation (cf [6]).
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The fourth part of the paper presents an algorithm for

approximating G based on the Fourier transform.

The final and fifth part of the paper is devoted to the

estimation of the parameter A of the original Poisson process

and of the mixing law a which yields the spherically invariant

one used in the model. Here again estimation is by the method

of moments : the estimator of X is obtained on the solution of

a linear equation and to estimate a one assumes it is a convex

combination of point masses and adjusts the classical solution

of the moment problem to the case of a support contained in

the positive half-line.
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CHARACTERIZATION AND EXAMPLES OF SPHERICALLV INVARIANT

RANDOM VARIABLES

The problem considered here is that of determining a class

of spherically invariant distributions (see [5)) on the real

line. The extreme points of this set are the Gaussian laws P

with density

dP 
X2

11 1 202(1) --- (x) - e 2

where dx is the Lebesgue measure and one wants to characterize

the closed convex set generated by the family

{P1 ' a > 01. In terms of characteristic functions, one wants

to solve the equation :
-a

2u2

(2) (u) = e 2 i(da) = e e P(dx)

where 0 is the characteristic function of a spherically inva-

riant distribution P for v if $ is given and for *, if g is.

1.1 - Lemma

If P is spherically invariant, P is symmetric with respect

to the origin.

Poo : If P is spherically invariant, then by definition or

reference

azu2
#iu)= f eiux P(dx) = e 2 (da)

Since (u) - s(- u), P is invariant under the transfor-

mation x x. a

* Some author takes a larger class than the one considered here
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We know that 0(0) = 1 (then aVA+) = 1) and that # is

continuous in a neighborhooJof zero.

1.2 - Lemma

If P is spherically invariant, there exists * in

C'(]O, -[) (with derivatives of any order in ]0, -C) such

that for every real u

(3) *(u) = flul)

Pko0 : Define by the relation
a2

-(v) f e 2 dM (a)

Then for every positive v and natural integar n

2 e- di (a) < -
iK4.

so that * may be differentiated arbitrarily often in order

to obtain La2

dn (v) f 2 n - "T v

dvn  +

The transformation defined by T . a* b A is a

bijection of ,rK. Let v - I o T, the image v of g by T.

Then *(v) = f e-b v dv(b)

1.3 - Theo4em : ([41 p. 237)

There exists a positive measure v on l+ such that

Y v > 0 *(v) - -b v dv(b)
+K
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if and only if

is real valued on ,, i is and n > 0 1 n  d  > 0+ ~dv n

1.4 - Theotem

P is spherically invariant on (',1) if and only if

(4) P is symmetric with respect to the origin

(5) the characteristic function * of P belongs to (-\{0})

and the function 9, defined by

(6) 1u E *(u) V J(u2) is such that

V nJ Vv > 0 1) n dn* (v) 0 0
dvn

Ptoo6 If (4), (5) and (6) hold, one has, by 1-3, that

(7) i(v) = f e - b V dv(b)

This can be written as
a 2 U2

2
*(u) = *(u 2 ) = e dv(a) which, as we know is

the characteristic function of a spherically invariant proba-

bility.

If P is spherically invariant, (4), (5) and (6) follow

from lemmas 1 and 2. *

1.5 - Exampte

The double exponential 1 is spherically invariant.

Indeed a straightforward calculation yields
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a002 
2  A

eiux x e- x lx l d- A 2 f e e a da
V + u2  0

The result is obtained by setting
a2 )A2d i ()=X 2 a --

d (a a e or

A
2

w(v) = and

d n _ _ _ _ _ _ _ _
dvn p(v) = (-1) (-2) ... - n) ( 2

dvn N (X + V)n+ 1i

1.6 - Exampte

O(u) = eA (e-  - 1) A > 0 a > 0 is the characteristic

function of a spherically invariant function.

Define T by a 2. and v by v = i o T

Since T is a bijection of

a 2u 2

4(U) f W e 2 f (da) e-b u v(db)
o 0

Choose for v a Poisson law with parameter X. Then

f(u) = f e 2 i(da) = eA(e -  -1
0

1.7 - Exampte

Student's law with n degrees of freedom is spherically

invariant.
X

Student's law is the law of the ratio of two indepen-

dent random variables X and R, the law of X being normal with

mean 0 and variance 02 and that of R being a XI with n degrees

of freedom.

Thus the joint density f of X and R is given by
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f(x, r) = - exp - - n exp -- () _
2o2 - 1 20 a a 2

r ( 2 2

The characteristic function of ? can be computed di-

rectly. By definition one has

xx
u ' (u) = E (e U -)

-r 1 2 n-1rf f e r exp - 1 exp - r r dxdr

V/2w 20Cr2 n 2a02 a 0
r(n1) 2

2

Applying Fubini's theorem, one gets, integrating over x,u 2 a~_ 2 r'2
T(u) 1 e 2r2  n-1 20 dr

n e (-) e-

T n
r(!) 2

To obtain the usual form, of the characteristic function

set a a ; this transformation is a homeomorphism of
r

3 ), =, so that

u a

OTu2- 2 1 2a2  da
O T(u) =  e an+1,+ n_ 1

i r (!!) 2 2

2

! "a
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11 - THE CHARACTERISTIC FUNCTIONAL OF THE FILTERED POISSON

PROCESS

Let C be a spherically invariant random variable. We have

seen that its characteristic function has the representation

a u

(1) *(u) A= E(e iuC) f e 2 da(a) where a is a proba-
i+

bility measure on 1Px+,q %+

Let T. be the time of the j-th jump of a stationary)

Poisson process with parameter A.

ST ., 0 4

As is well known for any fixed interval [a, b] the

number N of events T in [a, bJ is a Poisson random variable

with parameter (b-a) so that

(2) P(N = n) = e- X(b -a) [A lb-a)In

( n!

11.1 - Ptope4ty :

When N = n is fixed, the times Ti, T2, ... , TN=n of

intervals Ea, b], are random and can be chosen independent and
dr

of same uniform law -b-a

Finally, a jump at time T, of normalized sized, has an

effect described by G(t, T).

If we suppose the stationarity then

G(t, T) = G(t - ")

If we suppose the causality principle then:
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(3) G (t, T) =I

G G(t--T) <t

G is called the Green function of the process.

G(.-T)

(
0 t t

The filtered Poisson process is then defined by the

relation

(4) V tol Z(t) _ [ Cj(w) G(t - Tj)
je(

The Poisson process and the amplitudes C. jc-lA are

supposed to be independent.

In what follow, the following convenient notation shall

be used:

(5) 1 T R GT (s) 4 G(s) 1 [o,TI (s)

1[0,T] being the indicator of the interval [O, T]

11.2 - Popoaition If

(6) E(ICl) < - and

(7) fJ G(s)j ds < -, then
0

Z(t) is integrable and E(IZ(t)l) < E(tCj) f IG(s)1 ds
0

Mood Since JZtI c ICI IG(t-,r ), one has

% .... ...... . . -,. - - p .... a= _ ,--- I III I _j
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(8) E(IZ(t)) I .< E(ICI) E( I IG(t-Tj) I)

An upper bound for E( IG(t-T.)i) is obtained by consi-
jf-

dering finite time effects represented by the expression

(9) E( IGT(t - T

G T(t - Ti ) is zero except for Tj in [t - T, t], so that condi-

tioning on the number of Tj s in [t - T, t] one has using

probabilities (2) and property (3)

00 T(AT ) nE( IG T t-Tj ) l) =  I e_XT (Tn In (GT(-T) )
j=l n! 9 I E(IG(t-T.)I/N = ))

= e AT (AT )n t

e I (n! n f IG(t-T) I
n=1 t-T

=A f IG(s) I ds, so that
0

T
T (1 E( I IG(t-T j) 1) = A f IG(s)I ds

jfA 0

Taking the limit as T -, one has the needed result

(10) E( IG(t-T) I) = A f IG(s)l ds

4 j~~~ 0

We are going to characterize the temporal law of process Z.

To have a practical expression for the characteristic function of

i(11) mfw it,, t", .... t m 6 1 Z (Z(ti),I Z(ta),I .... Zlt m))

further assumptions are needed, as follows~m

(12) f IG(s)1I ds < - and even f IG(s)1 ' ds z 1 and
o 0

(13) f a' dM(a) <-

Since E(ICI) = f dp(a) f c' - exp dc f a2 d.a(a)
,2 " a a a A+
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(13) means that C has finite variance.

s 2 2 s

11.3 - Lemma f 1 - exp - f G2 (a) d
0 0

P4oo6 Consider f(l) 1 - exp - £ SL G2 (a) then

SL G a) exp S- G2 (a) and

2 2

G2 (a) exp A -- G(a) dX = 1 - exp - 2 (a)
0 22 2

At last, we take 1 = 1 then

1 - exp 2() exp - 2(a) dx2x 0 --- Gz (o

G G2 (o G) dX =

11.4 - Theo'tem

If Z is the derived Poisson process :

(4) 't Zit) = C. G(t -

if (14) and (15) are satisfied :

SJG(s)I2 ds < - and f a2 d4(a) - then

I mfw V(tj, t2 , ... t)& iM m VU = (u1 , u2 , ... , u)& M M

(14) *(u) - E(ei<uDz >) =

exp- d 5 ds do(a) 1 -exp I uk G(tk+s))P }

Pood: Without loss of generality, one may assume that

t, s ta $ ... 4t = 0 and that T > t m -t
mm
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-T t t t, tm I  o=t m

r-- -- 4 --- - -, .... F . . . . . .. .

TI T, T3 Tn- 1  T n

By definition of the inner product and of Z,

(15) <u, Z > U, Z(t) + + um Z(tm

m
Cj k I u k Glt k - Tj)

j.Z k-1

as done previously the calculation is performed first for finite

time effect by conditionning on the number of jumps

T m
(16) <U, Z > C. I u G(t - j)

V j~z i k=1

and we compute the characteristic function of this random variable.

3ui<u, Z T>

(17) T (u) - E(e
Tm

)n n i Cj u k G T(tk-Tj

AT -XT (AT) E(e k=1 IN = n)
e + n-n j=1

)n 0 an
T_ a u k GT(tk-TJ)21n

=e I (T [ -r f d4(a) e 2 k
n:l -T

2
0 a - G (k G~t-T))

AT e T dd&(a) e 2 k
=e e -T +

= exp I- A, T , dTda(a) 1 - exp{- - (I u GT(tk+T))
0 1R+

fWe will transform the exponent of the exponential ; let :

T " !(1 UkGT(tk+u))S(18) T (u) Alog T (u) A f f TJ dsda,(a) 1 - e-

i o
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and m
(19) G (s) uk  - s)

Then by lemma 11.3

(20) f dsdu(a) 1 exp a' G;' (s) iJ dsdL(a) G2(s)

+ +

f f dsdg(a) I - m u2 I GT(tk +2 U2 GT ( k + s)
Ix,+ k=1 k=1

NK 2 2 k=1 k k=1

So by the dominated convergence

(T M1 - ~ 2 ~ ~ +ql~

T 0 0L k=1 k

f f S dsd4(a) jI - exp {- ( u G(tk + s))a}
0 0 k=1

So we obtain

o(u) = exp - Af dsdii(a) I - exp - aGltk sl3
2 k=kk1

+=exp - x f dii(a) f. ds I1 - exp - 2 kkG(tk +s) l3

because, for tk + s < 0 or s < - tk and so for a < 0, one has

G(tk + s) = 0.

Furthermore since any translation on s does not change

the integral the assumption tv V tzv tzv ... v tm  0 is

not a restriction. U
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Remark : The process Z as defined is real valued. It is however

very easy to define a vector valued process as follows :

(21) Z(t) = J C. G(t-T.) E q

Where G is a function with values in &q.

To obtain the characteristic function of Z, it is useful

to introduce some new notation.

Let u be the (qxn) matrix with entries u i j and Z

be the matrix with entries Zi(tj).

Then, <u, Z > trace ut Z is the Hilbert-Schmidt

inner product for matrices.

One can then state

11.5 - Theore,,•

If Z is a filtered Poisson process with values in Rq

(22) ' t(IR Z(t) = Cj ((t - Tj)S- 3-a -

and if f JjG(s) I i ds < - and f a2 diL(a) < - then

M," V(t,, t, ... 0 t m) , fkm Ju , Oqxm

(23) *(u) E(ei < u ' Z> ) =

exp - f dsd(a) [ - exp-- <U k , G (tks)>)1

Remarks : Formulae 23 and 14 yield the same result if in (14),

uk G(tk+s) is replaced byI<uk, G(tk + 8)> - I Ui,k Gi(tk+s)
i1ic e ,th,. . q

with the convention that IIG(s) l *( <G, G> -Trace Gt G.
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III CALCULATION OF THE MOMENTS OF Z

A new process Z with characteristic function

O(u) = E(ei(uZ(t)+ ' . ' +um Z(tm)) = E(ei<U'Z >)

(1) = exp-X f ds da(a) 1 - exp - - ,[ Uk G(tk+s))'I
k -

is useful if it is different from the usual ones, Poisson proces-

ses, spherically invariant processesand more accurate to some

applications.

The aim of this section is to obtain the moments of Z. To that

end it is assumed that Z has moments of all orders and that

is analytical at the origin.

A k
1, I-. __ i,".At,) + I/I + u Zft ))

k=O

- ik E(u zr>k)

k=0

The explicit expression for * shows that * (u) is a func-

tion of the square of <u, G e(s) defined by :
(3) <u, G >(s) u k Sltk+S)

k

111.1 - Lemma : The odd moments of Z are equals to zero.

P400d The series expansion of the exponential function yields

a 2 PP <u , Gg>2P(s}
(4) 1 -exp - _ <u, GC>2 (s) - - (-2 ppl p=11

so that

a p<u,.Gr> 2p Is)

(5) #(u) exp + x f dsdo(a) . p_
S pl
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Finally this last exponential can be expanded to yield

a new series in the variable f ds <u, G >2 (s) where each

term is homogeneous in u and of even degree.

The odd moments which are the coefficients accompanying expres-i
ii m with i + i2 + ... i odd

sion of the form u, u 2  Um m

vanish. a

It is now convenient to introduce the second characteristic

function tp(u)

(6) P(u) = log (u)=- Xf dsdM(a) [1- exp- A <u, G>2(s)

+ 2'

111.2 - Lemma : (u) = - lq=i q

Pkoo : (u) = log 0(u) = log [1 (1-0(u))] and for

0 < E <1

log (1 - E) = - (E + -+ -.. + - + --- ) 3
q

111.3 - Lemma : (u) = - (-) E (<u, Z >

q=1 q 1  "2z)l

Ptoo6 Since the odd moments of Ztvanish, the expansion of

yields :

(7) *(u) = j (2-yE (<u, Z> 2 so that
z=0

(8) 1 - 0(u) = (<u Z > 2t=1 (26)! E (<u, Z,(>

Comparing the two expressions for * given respectively

by Lemma 111.3 and the relation (5), one obtains the moments

of Z. One has
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(9) q 1 (- -q!* >
- 1 =1 ( 1 )t,. s(u. )J = P(u) =

1. -!- f z  dki(a) f- ) do <u,G >2P(s)
p=l IR+

We consider first the coefficients of ul u2 with i, + i2 = 2

to compute moments of second order.

111.4 - Pkopo6ition, t E(Z(t)') =x f a'da (a) f G(s)I ds
R+ IR

y tl, t2 f R E(Z(t,)Z(t 2 )) = AJ a'djL(a) f G(t,+s) G(t 2 +s) ds
IR+ IR

Ptoo- One must have

1 (-1)1+1 E (<u Z > )

1 2!

1 iuL&a) (- - ) ds <u, G >2 (S)

Using the respective definitions of <u, Z> (11.15) and

<u, G > (3) one obtains

2
(10) E(uZ(tl) + uZ(t,)) =

x f a'dg(a) f ds (uG(tl+s) + uG(t2+s)) and equating

the coefficients of u , 2 and uul

E(Z(t,)') = Af a'du(a) f ds G(tl+s)2 =

Af alda(a) f do G(s)2 = E(Z(t2 )')

and

E(Z(t,) Z(t2)) = A f a'du(a) f ds G(t2+s) G(ta+s) aK t+
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Rematfz

G(4 A)A

A >

If tj < tz, the integrals f ds G(t 1 +s) G(t 2 +s) and

f ds G(s) G(t 2 -tl+s) are equal.
0

The next proposition lists the moments of fourth oroer.

L11.5 - oo4tn

1) (Z~'))3xf a 4 (ia) f dsG'(s)+3x' f~ a2dui(a) f dsG 2 (S

2) E (Z (t ) 2 Z(t 2 )
2 )=3)xf a 4 4(a) fdsG'(tl+s)G 2(t 2 +S)

R + I

+ A2 f a 2 d(a) f ds G(t)' Gt+)

+ IR

3)E(Z (tl ) Z (t 2 ) Z (t 3 Z (t4)

=3A~ f a 4 4(a)~ ds G(t1 +s) G(t2+s) G(t3+s) G(t4+S)

2

+ 1 2 a2 4() f ds G(t~+)~~.~2 R[ f aadG~tlsa)] ds G(t k s) Gt 8
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where the summation is over all permutations (i, j, k, 1) of

(1, 2, 3, 4) such that i< j and k < 1.

Poo6 : The first terms in the expansions of 4, formula (9)

are restectively, for

(11)

1 1 ;1) 1+1 E(<u,Z >2 ) + (1) +

1 2 "4! E(<uZ >  + +

+ 1 
2

2 1 . [(-1) 1+1 2+1 2"

1 E(<uZ> 2 ) _ E(<u,Z,>') + +

Equating the homogeneous terms of degree 4 in u, one obtains

(12) '- E(uZ(tl)+U2 Z(t 2)+u 3Z(t 3)+u4Z(t) )) +

(13) - E(uZ(tl)+u 2Z(t2 )+u3Z(t 3)+u4Z(tl)j =

(14) .f a4 djl(a) f ds uG(tl+s)+u2G(t 2 +s)u 3G(t 3 +s)+u4G(t4+s)]

This yields, if t i = t, i = 1, 2, 3, 4

+ A f a' do(a) f ds G'(s)

The first term on the right hand side is given by

Proposition III.4

In the case of tj t3 < t2 - tu
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2

4-F C4  E(Z(tl)
2  Z(t,)2)=

( 2E(Zltl)2)E(Z(t,) 2) + 22(E(Z(t)Z(t2)))2 +

1 2 a4

CP d4(a) f das G (t,+s) G' (t 2 +s)

where C2 4! Again the first term on the right hand side
(2!)'

is given by Proposition 111.4.

The case of tj < t2 < t3 < t4 is more complicated. For any

random variables Xi and real number ui , i = 1, 2, 3, 4, one

has that

(15) IE(ulXl + u2 X2 + u 3X3 + u4X4)2 =

... .... + uX.)., + 11X2 . U2X2) +
L

2E(uIu 2XIX 2 + uIu 3XIX 3 + U1uOX IX4

+ u2u 3X 2X3 + U2U 4X 2X4

+ u3u4X3X4)]

= [ u [E(Xia)1
i

+ 4 u 2 EX Xj)
i<j

+ 2 uzui [E (X2 E(2 )I
j<j 11

+ 4 u uiuj UkUL [E(XiX E(XkXL)1
i<j k<I

and (i,j) (k,l)

+ 2 2k
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The pair [(i < j), (k < 1)] is not orderrdso that there are

6 x 5 such pairs. The same is true for the pairs

i (i) , (k < 1)].

One then equates the terms containing ui uj uk ul with

(i, j, k, 1) permutation of (1, 2, 3, 4) and i < j < k < 1;

there are only six such permutations and

4! E(Z(t l ) Z(t 2 ) Z(t 3 ) Z(t 3 )) =

4; "

L E(Z(t1  Z(t.) E(Z (tk) Z(t)1' +2 x 2' i<j, k<1

(i,j,k,l) a permutation

a a4
2 f da(a) f ds 4!. G(tj+s) G(t;,+s) S(t3+s) G(t4+s)

For the summation one choose i < j among 1, 2, 3, 4
i<j,k<l

and (i,j)O(k,l)

and k < 1 are the two remaining integers. a

Remark : One could also compute other moments such as

E(Z(tl) Z(tl) 2 Z(t3)) and E(Z(tl) Z(t2)3) but these are of a

lesser interest.
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IV - IDENTIFICATION OF THE GREEN FUNCTION G

Given some experimental data, one may assess the adequacy

of the model and in case it is satisfactory, to estimate the

paratemers which are the Green function G, the parameter X of

the original Poisson process and the mixing law V for the ampli-

tude C. In this section, an estimation procedure for G is pre-

sented. Estimation of X and 4 is the subject of the next one.

Statistical estimation based on one trajectory of the

observed process requires that the process be strongly statio-

nary which is the case for the process Z. Its characteristic

function (theorem II.4) is indeed invariant under translation

of the time variables.

The covariance F of X(t) and F of X2 (t) are stationary
2

and given oy tne reiation

A
(1) r(t) E(Z(t)Z(t-T))

=  A f a'da(a) f G(s) G(s+T) ds
R I+

(2) r 2 (T) E(Z (t) Z' (t-T))

3X f a4 d4(a) f ds G2 (s) Ga (s+T) + r a 2di(a) fds G'(s)
IR + IR IR + IR

+ 2X2  aldL(a) f ds G(s) G(s+T)
4+R

In (1), A f a'do(a) is a normalization factor and,

1++assug (11.12) one has r(o) x a ' i d(a)G.

IV.1 Ptopo,6iton : Let g(f) f + eJ+i sf G(s) ds =T(G). Then
_W

(3) r(T) r(o) f e-iSf df

1>2111
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g is the Fourier transform of G, hence the notation

g = '(C). It is square integrable and vanishes for s < 0

one defines (cf 13], p. 30) its analytical exten-

sion g(f + ib) by the relation

gf + ib) f I eis (f+ib) G(s) ds b > 0
0

g is said to belong to

2+g the Hardy space H

0 f

Ptoo6 Taking the inverse Fourier transforml - of g, one

gets =~+ -isf
(4) G(s) =- (g) (s) f 2 e- g(f) df

In (1) the integral in s, is in fact, a convolution in s, let

(5) G'(r) - G(- r) then

(6) f G(s) G(s+T)ds = f G(s-T)G(r)dT = f G'(T-s)G(s) ds = G* G(T); S

With self-evident notation, we know that

C', 1 e-
G'* G =JG ( G' . G)s

+00

But, by definition g(f) - Y G(f) = f+ eisf G(s) ds,

and = G'(f) = f eis f S(-s) ds, consequently

(7) r (T) = r (0) G' s G] ()

r(0) f-f e-f Ig(f)1 2 df

This result shows in particular that the gain Ig(f)j

of the causal filter G can be estimated when an estimate of the
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covariance r is available.

It is a standard procedure in automatic control to

recover the response G of a causal filter from its gain Igj.

There is however a difficulty which can be illustrated

with the example of a rational filter G whose Fourier transform

is given by the relation :

(f - b) (f - b2) ... (f - bq)
(f - a,) (f - a2) ... (f - ap )

Since G is causal, g is entire in the upper half-plane

so that the poles a,, a2, ..., ap of g belong to the lower

half plane R..

Since G(s) = IT f e g(f) df is assumed real and

then

1 + +ifs f+ __ifs -
2 - 2f -' 

(9) g(f) = g(-f)

(9) shows that b -b are simultaneously zeroes of g

and a - a simultaneously poles of g.

Let bi be a zero of g and define g' by the relation

(f - b1 ) ... (f - b ) f -bi

g (f) = (f - a,) ... ( f - ap) f b.

g' is a frequency response such that jg'(f)l = Ig(f)I. If f is
f - bi

real, i has modulus l and is called an interior function

(cf [3], p. 36)
f - b f +b

Multiplying (8) by f- bi one obtains the frequency
i xf+ 1

response of a causal real filter.

Thus IgI does not uniquely determine G and the question

arises as to the best choice of G.

,~ -i
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IV.2 - Deinition : A causal filter G is said to have a minimal

phase if 1 is the frequency response of a causal filter.g

For a filter with minimal phase, the zeroes b of g have

to be in the lower half plane and the following result obtains

((3] p. 37).

IV.3 - Ptopo6iZion : The gain IgI determines the causal, phase

minimal filter G.

In fact, the frequency response g of this phase mini-

mal filter G has an analytical extension in the upper half

plane given by
1 y(f+ib) + 1 log ig(y) I

(10) g(f+ib) = exp log 1 Y  dyin y-(f+ib) y2 + 1

This expression may be used to approximate aff).

f l ; for

log g(f+ib) = b f log lg(y)ldy
IT (y-f) *+ b2

+ i E(f-Y) -+ j log lg(y) I dyI (y-f) 2 +b* 2 Y +I1

and thus

i) b f log Ig(y) l, -- a. log Ig(f) I (13] p. 37)

(.y-f) z+ -

I L (f-2 + log lg(y)l d -_a Arg g(f)
ii) f (yf) ,b +b Y 2 + a+s

([3] p. 38 and 5;)

When b small this last integral gives an approximaticn

of the phase Arg g(f) of the uniquely determined, causal,

minimal phase filter G.

G can be also approximated directly. For b > 0, define

Gb by the relation
-- -I t _
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(11) Gb g (f+ib) df

Since g(. + ib) converges in L2 (11 , S, df) to g(.) as b goes

to zero ([31 p. 30) and since the Fourier transform is an isometry

in L2 (k,4 , df)

'1V Gb ,~ = 1 iftfi y(f+ib)+1log*gy

(12) Gb(t) f dfe ift exp J -fi2 T- (f+ib) Y +1

converges in LV(,AA, df) to G(t), as b goes to zero.

(1) 'log tg(Y)1 2+
(13) f °  dy exists for functions g in H

Y2 +1

The desired approximation Gb of G requires that the Fourier

transform of a complex function be obtained.

In conclusion, the correlation function r(T) determines

the causal, phase minimal filter G which can be estimated.

The same is true for r2 (T) as defined in (2)

r2 (T) = 3t f a4d4(a) f ds G2 (s) G2 (s+t)

+ r(0)2 + 2r(T)

Up to a normalization factor 3X f a4dA(a), one has an

estimate of f ds Ga(s) G2 (s+T). This function of T, also yields

the gain, denoted g, (.)l of the causal filter G2 and one may

compute from this gain 1g,(.)I, the response G2 of a causal,

phase minimal up to a normalization factor.

If the two estimations of G', the first based on the mo-

ments r( ) = E(Z(t) Z(t-T)) and the second based on the moments

r =(T) - E(Z2 (t) Z2 (t-T)), are equalnearly equal one can safely

accept that G is indeed a deterministic function.
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V - IDENTIFICATION OF A AND

Here the Green function G is supposed known and the aim is

to estimate the unknown parameter A of the indurlying Poisson

process as well as the mixing law a determining the law of C.

Having assumed in part III that the characteristic func-

tion * of Z can be expressed as a known series whose coefficients

are the moments of Z, the relation

(u) og () 2p (- 1 )P

= Log *(u) I u A' a12 P dg(a) f G(s)2p ds
p= 2p p! +s

should yield, after proper truncation, estimate of X and a in

terms of the moments of Z.

The problem can thus be stated as that of determining

A and g given the equalities

(1) A f a2 P d4(a) = p = 1, 2,
pIL +

where a is known, is obtained by dividing the coefficient

of u2p in the expansion of t by (- 1 )P 2
P p! f G(s)2p ds

II

Such a problem can be restated as a classical moment

problem (1I]). Indeed if "a is symmetric probability measure on
I1

(R,) such that the problem at hand becomes that

of finding p such that k F IN

fa 2k d = fa 2kdgl=cak

iP[ 2k 1 dI' = 0

The procedure is as follows. Orthonormalyse the sequence

of functions {ak ; k E W U (011 in the Hilbert space

L2 ( ,46, P) in order to obtain a sequence of orthonormal polyno-

mials JPk I k6NU (0)1.

. . . .. . , . ,
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We recall the results about these orthogonal Polynomials

as shown in [i], chap. I

Let

(2) 5k f f ak dv(a) moment of order k of

So S1 ... S k

S 1  S 2 . . . Sk + 1

k . -............... I I denoted the determinant
Sk Sk+1 S2k

For the family {Pk kC I U {0}}, these relations are

valid

s o 0 S . . .• k

(4) Pk(a) ah = s, s2 ... Sk+I1 andDk-i ? ... .. ..

ah ah+l... ah~k

(5) aPk(a) b k-1 Pk-1 (a) + akPk(a) + bkPk+ 1 (a) where

(6) b_ = 0

(7) a k = f aIPk(a) 2 d4(a), tR

8) bk= VDk-1 D k+1
k  Dk

V. 1 - P4opoitio.n : If js is a symmetric probability measure

on ( R,0 then

P2k ( - a) = P2k(a)

P 2k+1 (- a) P 2k+l(a)
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Pk00' Po (a) = 1 and one proceed by induction.

Since a and P2k(a) are orthogonal by construction

a2k f a IP2k(a)PI du(a) = 0, so that,by (5),

a P2k(a) - b2k-1 P2 k-1 (a) = b2k P2k l (a) and

P2k+1 (- a) = IF- a P 2k(- a)- b 2 kl P2kl ( - a) =2k1(a)

b 2k

Similarly a2k+l = f a [P2k+1 (a)12 d(sa) = 0 so that, by (5),

a P2k+1(a) b 2k P2k(a) + b2k P2k+2 (a) and hence

P2k+2 (- a) = P2k+2 (a)

V.2 - Cotottay

1 S2 ... S2k

P2k(a) = 4 s 2  s ... 2k+2

D2k D2k-i
1 a2  a k

I 
52k

1 I S2 ... S 2k

S 2  s4 ... D
P (a) = 2k2 -2k-i a P(a)

2k+1 D.. V D2k+i a 2 k~aD2k 1 D 2k  ... ..... ... D k+

a a3 a. 2k+1

L
Poog : One integrates a P2k (a) with respect to 1L and clearly

• 2k-i
P2 k(a) is orthogonal to 1, a, ... , a and similarly

2k
P2k+1 (a) is orthogonal to 1, a, ..., a *

Since only a finite number of moments is avalaible, gL

can be determined if it is a finite convex combination of point

masses.A ______ ________
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Let thus ii be defined by the relation :

(9) Sol + L. 2  + .. + IL 6  where

(10) = + *.. + = 1 IL > 0 ... > 0.

The equalities X 2P da a p then become
+

W Iu a, the become:+ 0
2 + ... + o 2) = Cl

(L 9 O 2 at + pa a 2  + + r at 2 "2 ) = a
(11)

0'ga l j22 + g~ a= 2
' = ' * -.- + ,l o ' aL) = a j

There are as many equations as there are unknowns.

V.3 - Remda4k : When g is symmetric, the odd moments vanish.

One writes qx equaiiLivz buLt 2Z comes fro,. cdd m.ments ov frn

symmetry.

The last equality for the odd moment is f a4 t-1 d(a) = 0.

The last relation X f a 4 dl(a) = 2. does not appear in the

classical moment problem.

We propose to compute a from the 2X first relations and

after to obtain X from the last one :

x f a4 z do(a) =

In fact, we will eliminate the unknowns ui , oa

1 = 1, 2, ... , I of the system (10) (11) to obtain X directly

from the of!

Once X is known, one has the usual moment problem.

.,
I, -#
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VA Ptoposition Let 6 = 6 ; and
i=1

S2k = [ a2k dg(a) k an integer. Then

K+

S2k+2.0 S2k+2 - 2k+2t

(12) S2k+2.1 S2k+4 ... S2k+2t+2 0
.... .... ... s....

S2k+29 S2k+29. - 2k+4L

This determinant has 1 + 1 rows.

Ptoo6 : The proof is written for the case of L 2. We start from

i A 2 = 1

2

41 01 + 42 02 = S2

Al O 1i + 12 02 = S4

6 6
41 O.1 + 4 2 02 = Sf

These equations are linear in Al, 12, the first two determine

ll, 92 and the other two must be consistent.

1 1 1

y12 2 S2 0 and

01 02 Si

01 022 S 2  S2

2S01 0S1 02 0 1 12 S2

o~ s o~s ss l 02 s

11 1 82

Let V I o,2  Va 012
2 and S 0 S2 Sl S4

Cy 2 4 4 S6
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So and S1 both belong to the span of V, and V2 and any

other vector in this space is dependent on So and SI. This is

the case of

S4

$2 S6 s since the relation

il101 + 112028 = se yields

oj 4 2 S4 1 1 S4

016 026 S6 = 01402 012 022 56 0

8 8 4 4'
01 a2 Se 01 02 s8

So finally

1 2

S2 S4 s: U

S 4  S6 S8

Starting from the equations

2k 2k
11 + 20 S 2k

2k+2 2k+2
U101 + 202 =S2k+2

2k+8 2k+8
U1101 + V2a =S2k+B

A similar result is obtained, that is

s 2k S2k+2 S2k+4

5 2k+2 8 2k+4 S2k+6

a1 5 2k+4 S2k+6 S2k+8

The generalization for arbitrary i is obvious.W

.,a, L. . . . . - , -
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We next show that X which appears in (11) is the solution

of a linear equation.

Indeed by dividing (11), by X, yields

P1 + 12 + --- + = 1

2 2 2 = .1
U101 + 1202 + ... + -

U c 9+ P202" 4X+ + ja4t '2z A 3S

and by proposition (V.4), one has

_t 1 _L2 ..£ 0 + 10 or

OL1 a2 .. 1+ 0 which can be written as

a1 a2 -. +1

a linear equation as

.
+  " a 2 z follows

a2 .'" a. +1 0 a ...

(13) ... ... a 1 a2 .. . L +

a l + .. . a 2 , a I a + 1  . . . a 2 t

Rema :z6 If p is as above, there are relations between the

ap's which must be satisfied because of proposition V.4

For example, one must have

C1 a 2 ... a t+1

(14) 1 0
Q 1 + 1 C9 + 2 ... C2 jE +l

a . . .
• n.£ 4" -"2- - "
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If these relations are not satisfied where calculations

with experimental data are carried out, one must chose a larger

value of t.

The gaussian case is associated with the value I = 1

and the equality aia 3 - a2 =f a2dvf a'da - If a4dv 2 = 0.

Thus one must compute moments of order six.

When LL is a convex combination of point masses, the

Hilbert space + , ? ) can be characterized, indeed

V.5 - Popobteon If A is a convex mixture of dirac, the

A
Hilbert space l + ) has dimension 21.

Ptooj : By corollary V.2, one has an explicit expression for
2Z-1

2C-- '.'-h---z

1 S2 ..... s2t

P2 1t(a) 1 s2 S4 ..... s2z+1

VD2z 2t-1.. ... ..
29.

1 a2  ..... a

1 S 2  • S2 1

S2 S4 ... 2t+2

21.
Moreover f P2 Z (a) a dila) = ...... ... ... 0

s21 s2,+2 s 4 X

by proposition V.4. With respect to the measure i, one has

(P2t (a)12' dv(a) = 0 and P2 z is linearily dependent of 1, a,
2U-1

o. ,a

The same occurs for P2 1+1 and more generally Ik > 0 for

P21 k"
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Thus P2 1 is a linear combination of 1, PI, "'' P2-1

but P2Z is useful for the identification :

V.6 - P4opoition The roots of P2 , are precisly

± a ± 02, .- ±£

P'ooj The proof is again written for the case of 1 = 2 ;

one has

1 S2 S4

P4(a) = S2 S4 S 6

1 a2  a4

P1U 
+  

W2 tj I O 12 + J2 Y2 2 P IC, 4 IJ2C,2 4

But P4(o) =1 2 so that

o1 2 + 2 22 1O1 +U2 2 4 1 10 6 +U202'

1 012 01"
2

J2 1 32 2 2C12 2

P4 (o1 ) = 1202 W2 72 4.202 = 0

1 012 C14

The general case is similar. 3

Once the polynomials P 0 , PI, ... , P are known the valuesI "''' -1

of Ak follow k = 1, ... , £ since ([I p. 22).

1 I7 kt = 2£-1
[ I Pi (ok) I

i=O

An other solution to compute k k = 1, i, ;..,

would be to consider the I first equations of system (10),

(11) since A and a,, ... , £ are yet computed.
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In conclusion, when it is assumed that C has a spherically

invariant law rather than a Gaussian law and when the mixing

term is a convex combination of point masses

4 t
& I k 6 , we can adjust the moments of C with the expe-

k=1 k

rimental moments of C till order 41-1, and using the extra

parameter X of the Poisson process equalities hold till order

4L. The extra moments of order 4t+k are determined by the

shape of L (see proposition V.4) but there is no more moments

to check discrepancies between the chosen model and the experi-

mental data.

I
tI

, ,:, ----- i



-39 -

8IBLIOGRAPHIE

[i] N. I. AKHIEZER, The Classical Moment Problem

University Mathematical Monographs, Oliver & Boyd,

London, 1965.

[2] D. DUGUE, Trait6 de Statistique th4orique et appliqude,

Masson et Cie, Paris, 1958.

[3] M. DYM, H. P. KEAN, Gaussian Processes, Function Theory

and the Inverse Spectral Problem, Academic Press, N. Y.,

San Francisco, London, 1976.

[4] P. A. MEYER, Probabilit4s et Potentiel, Herman, 1966.

[5] B. PICINBONO, Spherically invariant and compound gaussian

stochastic processes, IEEE Transactions on information

theory, vol. I, T. 6, 1970, pages 77-79.

-61 G. RUCKEBUSH, Sur le prob-teme ae ia syntnese aes r1itres,

Colloque C. N. R. S., Aussois, 21-25 sept. 1981

Volume 2, p. A1-i, A1.21

I. N. R.I. A., BP 105, 78153, Le Chesnay, France.



T


